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D I F F U S I O N  M O D E L  O F  L O N G I T U D I N A L  A G I T A T I O N  

I N  H E A T  A N D  M A S S  T R A N S F E R  P R O C E S S E S .  
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P R O C E S S E S  - I s t - L E V E L  P R O B L E M S  

V. V. Zakharenko and T. N. Azyasskaya UDC 66.040:2:533.6.011.6 

The application of a diffusion model is classified for describing heat and mass transfer processes. All possible 

combinations are formulated within the framework of the distinguished agitation models. The problems are 

divided into three levels of  complexity of  the combinations. Derivation of formulas and solutions for 

determining carrying capacities of a heat exchanger (mass exchanging apparatus) are considered as applied 

to the problems of the 1st level 

There exist a number of models allowing one to account for the structure of flows when solving problems 

of heat and mass transfer. "Limit models" - ideal displacement (ID) and ideal agitation (IA) - are the simplest 

in mathematical description. But often they cannot sufficiently accurately describe art object, thus leading to the 

need for more complex models, i.e., a diffusion model (DM). However, we did not find in the literature [1-5 ] any 

reasonable systematization in the presentation of DM employment for the mentioned transport processes. This 

paper is aimed.at compensating for this defficiency. 

A subsequent analysis will be made applied to heat transfer. But the obtained relations are fully valid also 

for mass transfer along the straight line of equilibrium. In this case the meaning of designations in equations and 

formulas, as will be shown below, somewhat changes. 

We consider the following model (Fig. la): a heat exchanger with a heat transfer surface F (length L and 

width B); the coefficient of heat transfer K has two volumes - for cold and hot flows with cross-sections ~ol and 

~o2, respectively. The flows moving in the heat exchanger have the following characteristics: hot - flow rate G1, 

heat capacity C1, temperatures T' (at the inlet) and T" (at the outlet); cold - flow rate G2, heat capacity C2, 

temperature t' (at the inlet) and f' (at the outlet). 

The flows can move in forward or reverse directions. The structure of flows is DM. In this case DM can 

be also transformed to limiting cases: ID and IA. 

Within the framework of our model we assume the coefficient of heat transfer K and specific heat capacities 

of flows C1 and C2 to be constant. In other words, in the considered process all the stages are linear. Consequently, 

the whole process is also linear. This makes it possible to use for the analysis the notion of carrying capacities (CC) 

[6, 7 ]. Thus, GtCI and G2C2 are the carrying capacities of forced transfer (the stages of heat supply to the heat 

exchanger and withdrawal), KF is the carrying capacity of transverse transfer (the surface stage), Q/A is the 

carrying capacity of the heat  exchanger as a whole, where Q is the heat t ransferred in the apparatus,  

A - T' - t' is the difference of temperatures at the inlet to the system (further we shall call it initial). We denote 

the process criteria [6 ]: KF/(G1CI) ~ a is the number of transfer units (NTU) for a hot agent, KF/(GxC2) =- b 

the same for a cold agent. 
To formulate differential equations we introduce (Fig. la) axis f (a current heat transfer surface), whose 

origin is congruent with the left end of the heat transfer surface, and axis l (the current length) and axis x (the 

dimensionless length or dimensionless heat transfer surface x = I / L  = f / F ) .  

We consider the heat balance of an infinitely small portion of a hot flow moving from left to right in the 
mode of DM: 
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Fig. 1. To the derivation of differential equations (a) and boundary conditions 
(b, c). 

G 1 C I T  + 'J'1501 OT + O2T dl  - G1C l T + O.__TT dl  - 21501 - -  K ( T  - t) d f  = O,  (1) 
Ol Ol 

where 2 is the coefficient of effective thermal conductivity, allowing not only for the thermal conductivity of the 
medium but also for longitudinal agitation of the flow. 

We transform Eq. (1) 

O 2T dl  07" dl  
'~'1501 ~ -- GIC1 al - K ( T  - t) d / =  O. 

Since f -- Fx, l = Lx ,  then d / =  Fdx ,  d l  = Ldx.  Then 

1 02T 
21501 L 20x  2 

- - ~  L d x  - G]C 1 O_T_T d x  - K F  ( T  - t) dx  = O. 
Ox 

Introducing the designations 2 1 / L  = Yl, O2T/Ox2 =- ~", O T / d x  =- (F we obtain 

71501 ~" -- G1CI~1" - K F  ( T  - t)  = O .  
(2) 

Here the highest-order coefficient 71501 represents one more carrying capacity - the CC of longitudinal transfer. 

We divide expression (2) by 71501, and the third term we multiply and divide by GICI: 

G1C 1 ~ __KF G1C I_ ( T  _ t) = 0 .  
Y1501 YI501 G1Cl 

We designate G1CI/Y1501 E p. Then the coefficient at (T- t )  should involve the product of the two criteria 

p and a. Correspondingly, for a cold agent we introduce the criteria K F / ( G 2 C 2 )  = b and G2C2/(Y2502 ) =_ q. As a 
result we have, in terms and symbols of the ratios of carrying capacities 

- p T -  a p ( T -  t) = 0 .  (3) 
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TABLE 1. Summary Table of Differential Equations and Boundary Conditions 

Model 

Diffusion 

Ideal 
displacement 

Flow 

Hot 

Cold 

4 -  

Hot 

...> 

Cold 

Differential equations Boundary conditions 

a t x  --0 T ' = T -  ( l / p ) T  

7 " -  p 7 " -  a p ( T -  t)=O 

a t x - -  I 7"=0 

a t x  =0 ~r=0 

;F + p(F - ap(T - t)= 0 

a t x  = I T ' = T +  ( l /p)7" 

a t x  --0 t ' = t -  (1 /qf i  

- q't+ b q ( T -  t)=O 

a t x - -  1 t=O 

a t x  =0  t = 0  

+ q't + b q ( T -  t)=O 

a t x =  1 t ' = t + ( 1 / q f i  

7 " + a ( T -  t ) = 0  a t x  =0  T ' = T  

- a ( T -  t ) = O  a t x -  1 T ' = T  

"t-  b ( T -  t ) = 0  a t x  =0  t ' = t  

"t + b ( T  - 0 = 0  a t x  -- 1 t ' = t  

TABLE 2. Levels of Complexity of Problems and Numbers of Computational Relations 

Cold 

ID DM IA DM ID 
Hot 

m = + l  m = + l  m--0  m = - l  m = - l  

ID --, 6 9 12 

i = + 1  

DM -~ 

! - -+1  

IA ,-, 

1--0 7 10 13 

DM ,-- 

1 = - 1  

ID 

1= - 1  8 11 14 

To reveal the physical meaning of the criterion p, we express the mass flow rate of the heat carrier G1 in 

terms of the product of density p, velocity of flow w, and cross-section ~o, and also take into account that 

a* - 2~(pC) is the coefficient of effective thermal diffusivity. Then for a hot agent p = G1CI/(71~ol) = vpCL/Qr~o) 

= wL/a* = Pe is the Peeler number for longitudinal agitation, which is the only parameter for DM. Of the same 

meaning is q = G2C2/(y2~o2) - the Peclet number of a cold agent. 

We introduce one more criterion: the ratio of the carrying capacity of the heal exchanger Q /A  to the 

carrying capacity of transverse transfer KF - criterion R, which is convenient for describing processes in 

dimensionless form: R =- Q /  (AKF) = Q /  (GtC1Aa ) = Q /  (G2C2Ab). 
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As applied to the processes of mass  t ransfer  the corresponding criteria have the form: 

a = - K x F / W = K y F / W / m  - N T U  in x p h a s e ;  

b = - - K y F / D = K x F / ( D m  ) - N T U  in y p h a s e ;  

p -  W/(71~Ol) - for x p h a s e ;  

q = D / 0 , 2 ~ 2 )  - for y phase  ; 

A x = X i n -  x~i n - initial moving f o r c e  i n  x phase; 

Ay = Y~in - Yin - initial moving force in y phase  ; 

R = M / ( A x K x F  ) = m / ( A y K y F )  = M / ( A x W a  ) = M / ( A y D b ) ,  )'l = d l / L ;  )'2 = d 2 / L "  

To obtain  boundary  conditions we consider  the heat  balance (Fig. lb)  for a "zero" volume of a hot agent  

at the inlet to the heat  exchanger :  

, OT 
G I C 1 T  - G I C I T  + ~I~OI ~ = O 

o r  

T + p T ' - p T = O ,  

hence T' = T - ( I / p ) ~ r  at x = 0. 

The  heat  balance for a "zero" volume of a hot agent  and  the outlet  f rom the heat  exchange  (Fig. ib)  has 

the form 

" " O T  O T  
- G1C1T - G1C1T + 21~o 1 - ~  = O , 21~v 1 - - ~  = 0 , 

hence ~r = 0 at x = 1 (the Dancwerts  condit ion).  

In a s imilar  way we can obtain a differential  equation for o ther  cases (motion f rom right  to left, a cold 

agent  flow). 

T h e  differential  equations and  the boundary  conditions for ID are obta ined  as par t icular  cases of the 

relations der ived for D when  p, q --} oo. On the other  hand,  when p, q ~ 0 the relat ions for DM change  over  to 

differential  equations for ID: 7" = 0 and  "t = 0 (we do not use these equations in what  follows). 

Allowing for the fact that  hot and  cold flows can be directed to the heat exchanger  both f rom left to right 

( 4 )  and  f rom right to left (~-), four differential  equations a re  obta ined for  DM (Table  1). T h e  same  n u m b e r  of 

versions is also possible for a limiting s tate  - ID. 

Each flow in the heat  exchanger  can move in any  of the modes DM, ID or IA. The  combinat ion  of the 

structures of both  flows determines  the complexi ty  of the problem: as has been a l ready  ment ioned,  the t ransi t ion 

from the limit models  ID and IA to DM makes  the mathemat ica l  descript ion more  complex.  There fo re ,  it is 

expedient  to introduce the subdivision of the problems by the levels. The  notion "level" does not involve any  physical  

meaning and  is introduced only for classification of problems according to the complexi ty  of description:  the 1st 

level includes cases when one of the flows is not presented by DM (only ID and IA); the 2nd level includes cases 

when only one of the flows moves in DM mode; the 3rd level corresponds  to the case when both flows move in DM 

mode. 

In general ,  R is a function of four variables: 
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R = f ( a ,  b, p, q). 

Depending on the specific situation (the level of the problem, the flow direction, a hot or cold agent) the 

characterist ic equations and the equations for R will contain different  combinations of these variables. 

We find the total possible number  of formulas for R allowing for the fact that each of the variables of p 

and  q can participate in the formula in the case of DM; it tends to infinity (--- ~ )  in the case of ID; it tends to zero 

(--, 0) in the case of IA. 

First we consider  the formulas with p (a hot agent).  There  will be five of them: two formulas for flow motion 

(--,) and ((-9 at finite p; one case when p ~ 0; two formulas for (---) and (,--), where p --, oo. The  same quanti ty of 

formulas exist, correspondingly,  for q (a cold agent) .  The  total number  of possible formulas is 5 x 5 --- 25 (Table  

2). T h e y  include 9 schemes for the Ist  level, 12 schemes for the 2nd level, and 4 schemes for the 3rd level. 

We note that formally we found the total number  of schemes; among them there are physically similar 

schemes for which the final expressions will coincide (straight flows (..~) and (~-)). 

A similar analysis can be performed for limiting cases applied to criteria a and b. 

We consider  the technique for derivation of the formulas for  R of the lst-level model using the example: a 

hot agent  moves from right to left in the ID mode, a cold agent moves from left to right in the ID mode. In short  

form we write this as 

hot (ID) 

cold (ID)--. 

For this case we take the differential  equations and the boundary  conditions from Table  1: 

i 

7 : - a ( T - t ) = O  at x = l ,  T = T  ; 

" t - b ( T - t ) = O  at x = 0 ,  t = t ' .  

We solve the system of differential  equations by the h igher-order  technique 

7"+ ( -  a +  b) T = O .  

(4) 

(s) 

The  characterist ic equation is 

k 2+ ( - a +  b) k = O ,  

its roots are  ko --- 0, kl = a-b .  
The  solution of Eq. (5) is T =/10 +/11 exp (klx). Having subst i tuted it into the equation of system (4) and 

allowing for the boundary  conditions, we express t', T', and then A - T' - t': 

( , , )  ( . . . .  + 1 A = / l  1 exp k 1 T /l 0 + 2  l e x p k  1, t /10 +21 a ' 

Then  

k, / 
+ - - - 1  . 

a 

/11 = 
A 

k 1 
exp k 1 + - -  1 a 

We write the expression for the heat flux which is received by a cold agent from a hot agent  as a result  of 

heat  transfer:  

t , ,  

Q =  GIC 1 (T - T ) = G1C 1 ( - / l  1 + : t  1 e x p k l ) .  
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We divide this expression by GICIAa and,  allowing for R = Q/(GICIAa), we have 

R = 
- 1 + exp k 1 

a exp k I + k I - a ' 

or in final form 

R = 

1 
a - b ( l  - e x p ( - a + b ) )  

1 + ~ ( 1 - e x p ( - a + b ) )  

Similarly we obtain formulas for o ther  cases of the 1st level (all nine formulas are given in Table  2 in the 

form of the numbers  of the corresponding computational relations): 

! 

hot (ID) -) k 2 + (a + b) k = 0 R = a + b (1 - exp ( -  (a + b))) (6) 
"-) 0 ' cold (ID) 1 + ~ (1 - exp ( -  (a + b))) 

1 (1 - exp ( -  b)) 
hot (IA) o k + b = 0  R =  b (7) 

) 

a (1 - exp ( -  b)) 
cold (ID) --- 1 + 

hot ( ID)* -  
cold (ID) --, 

k 2+ ( -  a +  b) k = O  

1 
R =  a -  b (1  - e x p ( - a + b ) )  (8) 

1 + (1 - e x p ( - a + b ) )  

hot (ID) --, k + a = 0 
cold (IA) o 

1 (1 - exp ( -  a)) 
R = a (9) 

1 + b ( 1 - e x p ( - a ) ) '  
a 

hot ( I A ) o  
c01d (IA) o 

1 
k = 0  R -  1 + a + b '  (10) 

hot (ID) (- 
cold (IA) o k - a = O  R = 

1 (1 - exp ( -  a)) 
a 

1 + b ( 1  - e x p ( - a ) )  
a 

(11) 

hot (ID) --" 
cold (ID) ~- 

k 2 +  ( a -  b) k = 0  R = 

t 
a -  b (1  - e x p ( -  a +  b)) 

1 + ~ ( 1 - e x p ( - a + b ) )  

(12) 

hot (IA)-~, 
cold (ID) 

k - b = O  R = 
1 (1 - exp ( -  b)) 
b 

) 

a (1 - e x p  ( -  b))  1 + - ~  

(13) 
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l 
hot (ID)~- k 2 -  ( a + b )  k = 0  R = a +  b ( l  - e x p ( -  ( a +  b))) (14) 

~- 0 (1 - exp ( -  (a + b))) cold (ID) 1 + 

It is seen that  the formulas for different  cases contain a combination of criteria; nevertheless some 

regularities are vividly seen. This makes it possible to reduce all formulas to a general form. 

For this purpose we introduce some sign variables 1 and m, which characterize the direction of flows. Let 

I = + 1 if a hot flow moves from left to right; 1 = - 1  if it moves from right to left; i = 0 if the flow is in IA mode. 

Similarly for a cold flow: m = + 1, m -- - 1 ,  m -- 0. 

Using the introduced variables, we present all the formulas for R in a general form 

R = /'/ ( I S )  
l + a + b - s  

1 + Fr~[  H 

where 

s = I l a  + mb[ �9 H = 1 (1 - exp ( -  s ) ) .  
' S 

A formula close to (15) was derived earlier [7 ], but in our  opinion it is less convenient in practical 

application. In fact, to obtain any  specific solution from (15) it is only necessary to place the corresponding sign 

variables in it, whereas the formula from [7 ] requires the choice of a kernel for each specific case. 

Thus,  we obtained differential equations for motion of flows and expressions for R. The  latter are reduced 

to one general formula for calculating R models of the 1st level. 

Equations for R and the sequence of derivation are demonstrated to confirm the correctness of equations 

of the 2nd and 3rd levels in their limit transitions given in other works, rather that to determine the formulas 

themselves. 

N O T A T I O N  

B, width of heat  transfer surface, m; K, coefficient of heat  transfer, W / ( m  2. K) ; Kx,y, coefficients of mass 

transfer in phases x and y, kg of phase x(y)/(m 2.sec); ~ol, 2, cross-section area of volumes for hot and cold flows 

in the heat  exchanger,  m2; G1,2, mass flux of a hot and a cold agent, respectively, kg/sec; C1,2, heat  capacity of 

hot and cold flows, J / ( kg .  K); T', T ~, temperatures of a hot agent at the inlet to and outlet from the heat exchanger,  

K; t', f ,  similarly for a cold agent, K; Q, flux of heat  transferred in the apparatus, W; A, difference of temperatures 

at the inlet to the heat  exchanger,  K; Ax,y , initial moving force in phases x and y, kg of component /kg of phase; 

a, b, number of t ransfer  units (NTU) for hot and cold agents; l, L, length of the heat  exchanger,  current and  final, 

m; f,  F, heat t ransfer  surface of the heat  exchanger, current and final, m2; x, current dimensionless length; 2, 

coefficient of effective thermal conductivity, W / ( m - K ) ;  p, q, Peclet numbers for hot and cold flows; p, density,  

kg/m3; w, flow velocity, m/sec;  a*, coefficient of effective thermal diffusivity, m2/sec; v, volumetric flow rate of 

heat carrier, ma/sec;  R, criterion equal to the ratio of the carrying capacity of the heat exchanger (Q/A) to the 
carrying capacity of transverse transfer (KF); W, D, mass flow rates of x and y phases in mass transfer,  kg/sec; 

m, equilibrium constant;  M, flux of mass transferred from one phase to another,  kg/sec; dl,2, coefficients of 
effective diffusion in x and y phases, m2/sec; l, m, sign variables characterizing flow direction. 
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